The Microsoft Windows Guidelines for Accessible Software Design

46

Adjusting Images for Different Sizes

In some circumstances, a graphic image might need to fit in a different
amount of space than originally intended. For example, a user may
adjust the global scaling constant using the Custom Font Size feature, or
an application might allow the user to choose a differently sized font. In
these cases, an application might draw an image that appears
unexpectedly out of scale with the surrounding text or other window
elements. Different methods of adjusting images are described in the
following sections.

Alternatives to bitmaps

Adjusting images is especially a problem for bitmaps, which are not
automatically scaled and do not usually look good when stretched. The
best solution is to avoid using bitmaps altogether and use instead
another kind of image that is designed to scale well. The following
alternatives can be used in place of bitmaps:

u Metafiles are a convenient way to encapsulate an image for easy
playback. They can automatically be scaled to fit the destination
rectangle and normally look good at almost any size. (Of course, this
benefit is lost if the metafile itself contains things that do not scale,
such as bitmaps.)

u If the image is simple and you do not need to encapsulate it for easy
storage and playback, you can create a routine that draws it on the fly
using Windows graphic functions.

u TrueType glyphs can represent the image. This solution can be
expensive if the expertise to create glyphs is not available in-house,
but the image can be optimized for any size. A complex TrueType
glyph will not be recognized by an accessibility aid, so you should
label the graphic using the techniques described earlier in “Use of
Bitmapped Text.”

Accommodating bitmaps when changing size

Several methods can be used to accommodate a bitmap to differently
sized regions:

47 The Microsoft Windows Guidelines for Accessible Software

Design

u You can scale your bitmap “at run time” using the StretchBIt
function so that it will be sized appropriately for its screen location.

u If you do not stretch your bitmap for an enlarged space, you can draw
it at its normal size and leave blank space around it. However, to
ensure that the region around your bitmap does not have unrelated,
older information lying around, you should erase the region to the
appropriate background color. You should specify the size of the
region using a drawing method other than MM_TEXT so that it will
automatically adjust to any global scaling factor.

u If you do not shrink your bitmap to fit a smaller space, you should
make sure that the bitmap is properly clipped to the surrounding
rectangle—for example, when the Custom Font Size feature is used
to select a global scaling ratio of less than 100%. You should specify
the size of the region using a drawing method other than MM_TEXT
so that it will automatically adjust to any global scaling factor.

Sound

An application should not convey important information by sound
alone, because some users will not be able to hear or recognize it. The
user may be deaf or hard-of-hearing or may simply be using the
computer in a very noisy environment, such as a workshop, or in a very

quiet environment where it is inappropriate for the computer to be
making sounds.

Applications make sounds for a variety of reasons. There are four
different types of sound:

u Important sounds, which convey information that is not presented
visually and which is important to the operation of the application.
Examples include an audio wave file with narrative instructions or a
sound notifying the user that new mail has arrived.

u Redundant alerts, which accompany a visual presentation of
information, yet serve an additional purpose of attracting the
attention of a user who is not looking directly at the computer screen.
An example is the optional beep that can accompany a message box.

u Redundant sounds, which repeat information already presented
visually and are not required for proper operation of the application.

The Microsoft Windows Guidelines for Accessible Software Design
48
An example is an error sound or beep that is heard when the user
tries to move beyond the end of a list box.

u Decorative sounds, which enhance the appearance or presentation of
an application, but are not required for its operation. Examples
include the sound effects that accompany minimizing a window or
activating a menu and background sounds and music used to
establish a mood in many multimedia games.

The user who cannot hear redundant or decorative sounds is not
disadvantaged, but the first two types of sound, important sounds and
redundant alerts, do require special attention.

For redundant alerts, Windows 95 and other utilities have the capability
to detect when the computer is making noise and to display a generic
visual indicator to the user. This feature is referred to as “SoundSentry.”
This feature works reasonably well in cases where the sound is just a
generic beep that is warning the user or trying to attract his or her
attention. However, it is of limited use with applications that use
different sounds to convey more complex information.

Conveying important sounds and complex information requires the
cooperation of the application.

Supporting the ShowSounds Flag

To convey complex information to users who cannot rely on audible
forms, the computer industry has standardized a concept called
“ShowSounds.” ShowSounds is a global flag that can be set by the user
to indicate that he or she needs important information displayed by

visual means. It requests applications to display the equivalent of closed
captions for their sounds.

Applications can check the ShowSounds flag by calling the

SystemParametersInfo function with the SPI_GETSHOWSOUNDS
value.

Use of the ShowSounds flag does not mean that sounds cannot be
presented normally. In fact, redundant use of sound and visuals
generally increases the usability of an application. The user should be

able to request visual feedback independently of whether they want
audible feedback.

49 The Microsoft Windows Guidelines for Accessible Software
Design

The ShowSounds flag is only applicable to applications that would
normally present important information by sound alone. The application
is responsible for determining how to convey the information in visual
form. Examples in the following sections can help you determine
behavior appropriate to your situation.

Audible alerts
To attract the user’s attention, such as when new email arrives, an
application might use the following techniques:

u Flash its title bar by using the FlashWindow function. If the window
is not visible, the function will automatically flash the application’s
button on the taskbar.

u Display a message box that acquires the activation and keyboard
focus. This technique should be avoided if the user might be typing
into another application at the time.

u Display a status indicator on the notification area of the taskbar. This

indicator should also flash when initially displayed to help attract the
user’s attention.

Redundant sounds

Applications often make a sound to indicate an error status— for
example, when the user types an invalid character. In these cases, the
application might flash its title bar by using the FlashWindow function.

If the window is not visible, it will automatically flash the application’s
button on the taskbar.

Playing a video clip

Applications that display multimedia animation of video clips should
support the ShowSounds flag with true closed captioning. Microsoft
Video for Windows supports creating a separate, synchronized data
stream for captioning information, although the application is
responsible for displaying the information on the screen. Captioning is

only necessary if the video clip has an audio track containing important
information.

The Microsoft Windows Guidelines for Accessible Software Design
50

Playing an audio wave file

Applications that play audio wave files containing important
information should display closed captions for that information.
However, it may be difficult in some cases to synchronize the captions
with the audio. For brief wave files, the captions can be displayed in a
status bar or elsewhere in the application window, or in a floating
window similar to a tool tip control. Longer descriptions can be
displayed in a separate window. The user should be able to scroll
through the information at his or her own pace. In hypertext

applications, a link can be used to take the user to a separate screen
containing the textual descriptions.

Turning Off Sounds

You should give the user the option to turn off sounds that your
application makes, because sounds can be distracting or annoying for
some people, such as those who are deaf or hard-of-hearing, or be
inappropriate in some environments, such as crowded or public spaces.

This is especially true of decorative sounds or sounds that are redundant
to information on the screen.

If you do not want to provide your own option to turn off sounds, you
can check the SM_BEEP option using the GetSystemMetrics function.
If this option is FALSE, the user has chosen to turn off the standard

system beep, and you can infer that they also want other sounds turned
off as well.

Supporting System Sound Events

You should generate the proper system sounds for any action your
application carries out. Windows 95 defines a large number of system
sound events and plays the associated sound when an error occurs.
When your application carries out actions that correspond to system
events, it should use the PlaySound function to play the sound for the
event if any has been set up in Control Panel. This makes your
application consistent with the rest of the Windows environment and

enables users to customize the sound scheme to give more or fewer
sounds, as they prefer.

51 The Microsoft Windows Guidelines for Accessible Software
Design
For more information about playing sounds, see, “Playing Sounds

Specified in the Registry,” in the Win32 Software Development Kit
(SDK).

Defining Application-Specific Sound Events

You should allow the user to customize the way your application uses
sounds by defining as many new sound events as possible. In Windows
95 and Windows NT, sound events are defined in the registry, and the
user can use Control Panel to associate any sound, or no sound, with
each event. You can have most of your events generate no sounds by
default, but the user who desires additional audio feedback can use
Control Panel to add their own sounds. This capability is especially
useful for people with visual and some types of cognitive impairments.

For more information about playing sounds, see, “Playing Sounds
Specified In the Registry,” in the Win32 SDK.

Layout
There are several ways that the visual design, or layout, of an
application can improve its accessibility.

Attaching Textual Labels to Controls and Graphic Objects
Some types of controls, such as buttons, have their own textual labels.
Screen review utilities have no trouble describing such controls to the
user, and voice input utilities can recognize the label name when it is
spoken as a command. However, other objects, such as edit controls or

graphical objects, are typically labeled by placing a static control
nearby.

The Windows Interface Guidelines for Software Design describes
guidelines for the placement of labels so that they are consistent across
all applications. Proper labeling helps make the interface more
consistent between applications and more usable for everyone; it also
helps accessibility aids. Proper labeling allows a screen review utility to
infer the relationship between a static control and the control associated
with it. If a static control ends in a colon, the screen review utility
knows it is a label and looks for an unlabeled control either to its right

The Microsoft Windows Guidelines for Accessible Software Design

52

or directly below it. When the utility describes the control to the user, it
can use the label from the static control.

If a static control label and the control it refers to are not arranged in a
standard pattern, it may be difficult for both sighted users and screen
review utilities to determine which label applies to which control, or
even that the two are related. A control and its label should not be
separated by too great a distance, and a text label should not have
unlabeled controls both beneath and to the right of it.

The following illustration shows the positioning of static control labels
above and to the left of the unlabeled controls associated with them.

e v cam Parmgraeh Srtnazn PoogrRed: S araem Peraraps. Srevoeam Semgragh S ras Busgrad
NG VKR PRIBEINOR P10kl PRIITRLR PROXL 0l DAY 1% T A DRIRETRON SNl Paraprarh

Apolttanon dasdd Ny Sapley ks el w1Toan irdbcamm viia dey T the save Wil hen
you lNE AXBVRAWA, ANAVE 1M AR} (NSRS anel (e cal} DzanayCurns m sfiere My pragreses
(Mar PiniL appitsannrs dei 10 ros wncdy Mestun

R iy o PN DAl Mo SRALLTRIA PO e g PRIRLTEI RORS e PRW gy, Kd e w g THIAEMO?.
Pl zao e €, PRARALE RAIromng PAEEITE- Wt 1w DUngae b Sl o meg DRnpingds edtianrg Prrpyngds
o e Preagr s Solter sy Pumgrir

Labeling Icons

If your application uses an icon or any type of graphic to represent an
object or control, you should also display a text label with it. This
arrangement is already familiar to users, and the combination of text and
graphic helps shorten the learning curve for a new user. It also helps
screen review utilities describe the object to a user who is blind and

helps users associate a name with the control to activate or navigate to it
by voice or other means.

——

53 The Microsoft Windows Guidelines for Accessible Software
Design

Following the normal guidelines, a text label should generally be placed
immediately beneath a large icon or to the right of a small icon. When
you place a text label beneath an icon, use the font, size, and color
defined for icon titles in Control Panel to make it consistent with other
applications. If you cannot display the text label visibly, at least make
the label available in a tool tip control, as described previously.

The following illustration shows the proper positioning of text labels for
both large and small icons.

&- i My Computer
1: -5 3% Floppy (A:)
1 5-& Smat(C)

l i@ Host for ¢ (H:)

Acroread Cpgnet

|

‘I &-8§ Network Neighborthood |
! ¥ Recycle Bin %
-3 My Briefcase

Labeling Controls Clearly

You should label controls and similar objects with names that convey
information not dependent on spatial context.

A user who is blind or has low vision can only read a small portion of
the computer screen at a time. A user who has tunnel vision or uses a
screen enlarger will see a control and perhaps its immediate

_surroundings, while a blind user examining a control will have only its

name, its type, and the name of the window and any group box it is in.
They will not have any of the context provided by spatial arrangements.

The Microsoft Windows Guidelines for Accessible Software Design

54

Labels do not have to be long and detailed. However, having several
buttons with identical labels can be confusing if they are only
distinguished by position. This confusion can be cleared somewhat if
the position of the buttons in the tab order makes the association clear or
if the buttons are within separately labeled group boxes.

The following illustration shows a dialog box where ambiguously
named buttons are clarified by being placed in distinctively labeled
group boxes and by having buttons immediately follow, in the tab order,
the controls to which they are related.

sesthalidy Fropesin

it 2
H et 1 i
i i i
i “ A b .’
{ -

|

Positioning Related Items near Each Other

55 The Microsoft Windows Guidelines for Accessible Software
Design

You should try to arrange related items near each other. Because a
person with low vision or tunnel vision can only see a portion of the
screen at a time, this arrangement helps reduce the amount of work the
person has to do to shift their gaze back and forth between related items.
It also makes relationships clearer to all users.

Using Consistent and Expected Screen Layouts

People who use software to enlarge a portion of the screen or who use a
screen review utility cannot see the entire screen at once. Placing screen
components, such as buttons and toolbars, according to standard
conventions can help these people get familiar with the product. It can
also help screen reading software identify status items and other
components that need special handling.

For more information about layout conventions, see The Windows
Interface Guidelines for Software Design.

Spacing for a Specific Font

Some applications space their dialog boxes so tightly that they look
unattractive if the user changes the dialog box font. Some users change
the font to make the dialog box easier to read, so you should leave
enough white space in your dialog box layouts that they can
accommodate small changes in font metrics. Extra white space also
makes an application easier to localize into other languages.

Some developers fear that a change of font will completely break their
dialog boxes, but this is rarely a problem. Users typically change only
the size of the font, not the typeface, and Windows automatically
positions dialog box controls based on the size of the dialog box font.

The primary case where changing fonts can be a problem is when an
application draws directly into elements of a dialog box. For example,
some applications create a static control and then draw over it to create
a custom design element. This element can appear incorrectly if the size
of the static control is scaled to match a new dialog box font size.

However, the application can determine the proper location and size at
run time to avoid these problems.

The Microsoft Windows Guidelines for Accessible Software Design
56

Some applications now include specific fonts in their dialog boxes
rather than relying on the system dialog box font. It is a dangerous
practice, however, to not allow the user to adjust those font sizes. For
more information about these issues, see “Color” and “Size” earlier in
this document.

Optional Ease-of-Use Features

The following features are recommended because they make an
application much easier to use for some users. However, their exclusion
should not render an application inaccessible.

Providing Mouse Access to Common Features

Some users, who can use a pointing device but not a keyboard, use an
on-screen keyboard utility to simulate keyboard input. Using the utility
is less convenient and less efficient than performing actions designed

for the mouse, so providing good mouse support makes the application
easier for them—and others—to use.

Using Only Simple Mouse Operations

When possible, you should require only single-clicks to perform
common operations. Some users have difficulty holding down a mouse
button while moving the pointing device, and this makes drag-and-drop
operations difficult. Double-clicking is also more difficult than single-
clicking, so you should provide single-click access to commonly used
operations whenever possible. You should also avoid requiring the use
of mouse button 2, because some pointing devices and many alternative
devices used by people with disabilities do not support it.

Reconfiguring Commands and Dialog Boxes

Providing customization of keyboard commands, menus, and dialog
boxes makes it possible for users to specially tailor an application for
their needs. For example, users who enter keystrokes slowly (either
through the keyboard or other input devices) can benefit from assigning
simple key combinations to lengthy, repetitive tasks. Users with
cognitive disabilities can often benefit from a reduction in the number

57 The Microsoft Windows Guidelines for Accessible Software
Design

of options in menus and toolbars. One approach is to provide the user
with a choice of menus with different levels of complexity, such as
novice, intermediate, and advanced menu configurations.

Macro capabilities that allow a user to create custom dialog boxes is
also another good way to reduce complexity and improve access to the
features a specific user requires. This type of feature is normally

supported in large applications, such as Microsoft Word and Microsofte
Excel.

Making Graphical Decorations Optional

If your application uses graphical “decorations” that do not convey
additional information, you should consider providing an option to hide
them. For example, icons that illustrate option buttons can be hidden if
the function of the buttons is already described by accompanying text.
Such graphical decoration is very useful for most users, but it can be a
hindrance for users with cognitive disabilities who require a simpler
interface with less visual distraction.

Verification of an Application’s Accessibility

All the planning in the world will not ensure that an application is as
accessible as it could be. However, a number of techniques can be used
to measure your success in meeting your accessibility objectives. These
techniques are described in the sections that follow.

Testing for Compatibility with Accessibility Aids

Your application can be inaccessible if it has problems running with
certain accessibility aids, such as screen review utilities, screen enlarger
utilities, or voice input utilities. Even if you think of your product as an

application, it is a development platform that accessibility aids must be
compatible with.

If possible, you should try to include a sampling of utilities in any
compatibility testing you perform. To obtain a list of vendors and their
utilities, see Appendix A, “Additional Resources.”

The Microsoft Windows Guidelines for Accessible Software Design
58

Including Accessibility Sites in Beta Tests

The best way to find out if your product is really usable by people with
disabilities is to actively solicit their feedback. Include those people in
any beta or usability tests you run on your product or employ them on
your staff. You can also send evaluation copies to organizations that
represent or work with people with disabilities.

You should also try to include companies who develop accessibility
aids in your beta program. This will not only allow them to make sure
their product works with your own, but also allow them to prepare any
special configuration files or other items necessary to make the two
products work well together. They can also provide you with valuable
technical suggestions for improving your application’s accessibility. For
more information about accessibility aid manufacturers, see Appendix
A, “Additional Resources.”

Including Users with Disabilities in Usability Testing

If you perform usability testing, you can try to include subjects who
have disabilities. You do not necessarily have to design special tests for
these subjects, but you should watch to see how these individuals
approach and perform the ordinary tasks you are already testing. It can

be a very informative process, helping you learn about the different
ways in which people work.

Comparing Against the Accessibility Guidelines

You should assign testing resources that compare your product against
the guidelines described in this document.

Try It Out!

You can test your application to see how well it addresses some of the
issues discussed in this document by following these suggestions:

u Use your computer for a week after choosing a high contrast color
scheme in Control Panel, especially one that uses white text on a
black background, such as High Contrast Black. Are there any

- portions of your application that become invisible or difficult to use
or recognize?

59 The Microsoft Windows Guidelines for Accessible Software

Design i

u Use your computer for a week without a mouse. Drop the mouse
down behind your desk. Are there operations you cannot perform? Is
anything especially awkward to use? Are the keyboard mechanisms
adequately documented?

u Increase the size of your system font using the Display property
sheet. (In Windows version 3.1, edit the Fonts.fon=, Oemfonts.fon=,
and Fixedfon.fon= entries in the SYSTEM.INI file to specify a larger
font. It is easy to test with the 8514*.fon files provided with
Windows.) Does your application look good despite the changes?
Can you adjust all of the fonts in your application to be at least as
large as the system font?

u Change the display scaling ratio using the Custom Font Size feature
in the Display property sheet. Does your application appear
consistent, or do various elements of the user interface appear
disproportionately large or small?

u Use your computer for a week after choosing an enlarged appearance
scheme in Control Panel, such as Windows Standard (Extra Large).

Are there any portions of your application that are not consistent with
other applications?

The Microsoft Windows Guidelines for Accessible Software Design
60

Appendix A: Additional Resources

General Resources

For more information about Microsoft products and services for people
with disabilities, or to obtain a listing of third-party accessibility aids for
Windows and Windows NT or a listing of resources available to help
produce accessible documentation, contact:

Microsoft Sales Information Voice telephone (800) 426-9400
Center One Microsoft Way Text telephone (800) §92-5234
Redmond, WA 98052-6393 Fax (206) 635-6100

The Trace Research and Development Center of the University of
Wisconsin at Madison produces a book and a compact disc describing
products that help people with disabilities use computers. The book,
titled Trace Resource Book, provides descriptions and photographs of
about 2,000 products. The compact disc, titled CO-NET CD, provides a
database of more than 18,000 products and other information for people

with disabilities. It is issued twice a year. To obtain these directories,
you should contact:

Trace R&D Center Voice telephone (608) 263-2309
S-151 Waisman Center Text telephone (608) 263-5408
1500 Highland Avenue Fax (608) 262-8848

Madison, W1 53705-2280

For general information and recommendations about how computers
can help specific users, you should consult a trained evaluator who can
best match the user needs with the available solutions. An assistive
technology program in your area will provide referrals to programs and
services that are available to you. To locate the assistive technology
program nearest you, you should contact:

National Information System Voice/tex (803) 777-4435
Center for Developmental Disabilities telephone (803) 777-6058
Benson Building Fax

University of South Carolina
Columbia, SC 29208

61 The Microsoft Windows Guidelines for Accessible Software
Design

Additional Accessibility Guidelines

This document is based on the general guidelines first proposed in the
white paper “Making Software More Accessible for People with
Disabilities.” That paper was prepared by Gregg Vanderheiden of the
Trace R&D Center of the University of Wisconsin at Madison under
funding from the Information Technology Foundation (formerly
ADAPSO Foundation) and the National Institute for Disability and
Rehabilitation Research (NIDRR) of the U.S. Department of Education.
That paper and similar guidelines for other types of products are
available on the CO-NET CD or in print from:

Trace R&D Center Voice telephone (608) 263-2309
S-151 Waisman Center Text telephone (608) 263-5408
1500 Highland Avenue Fax (608) 262-83848

Madison, WI 53705-2280

The Windows Interface Guidelines for Software Design, included in the
Win32 SDK and available as a book from Microsoft Press, contains a
section on accessible software design.

The Windows Interface: An Application Style Guide, published by
Microsoft Corporation and included with the Microsoft Windows SDK
version 3.1, contains useful information on user-interface design for
Windows version 3.1.

Writing Accessible HTML Documents, a guide to creating accessible
documents for the World Wide Web, is available from the Center for
Information Technology Accommodation, General Services
Administration, Washington D.C.

Customizing for a Specific Operating System

There are many ways you can customize the appearance and behavior of
Windows or Microsofte Windows NT™ to accommodate varying vision
and motor abilities without requiring any additional software or
hardware. These customizations include adjusting the operating
system’s appearance, as well as the behavior of the mouse and
keyboard. The specific methods available depend on which operating
system you are using. Application notes are available describing the
specific methods available for each operating system,

The Microsoft Windows Guidelines for Accessible Software Design

62

For information related to customizing your operating system for people
with disabilities, see the appropriate application note for the following
operating systems.

Operating system Application note
Microsoft Windows, version 3.0 WW0786.TXT
Microsoft Windows, version 3.1 wWWwW0787. TXT
Microsoft Windows for Workgroups, version WGO0788.TXT
3.1

Microsoft Windows NT, versions 3.1 and 3.5 WNO789.EXE
Microsoft Windows 95 WN1062.EXE

These application notes are available for downloading from the

following network services:

u MSN™ the Microsoft Network online service.

u CompuServe®.

u GEnie™,

u Microsoft Download Service (MSDL), which you can reach by
calling (206) 936-6735 any time, except between 1:00 A.M. and 2:30

AM. Pacific time. To reach the number use the following
communications settings:

Setting Value

Baud rate 1200, 2400, 9600, or 14400
Parity None

Data bits 8

Stop bits 1

u Various user-group bulletin boards (such as the bulletin-board
services on the Association of PC User Groups network).

u In/SOFTLIB/MSLFILES on the Internet servers

FTP.MICROSOFT.COM, GOPHER.MICROSOFT.COM, and
WWW.MICROSOFT.COM.

People within the United States who do not have a modem can order
these application notes on disks by calling the Microsoft Sales
Information Center at (800) 426-9400 (voice telephone) or (800) 892-

63 The Microsoft Windows Guidelines for Accessible Software
Design

5234 (text telephone). In Canada, you can call (905) 568-3503 (voice
telephone) or (905) 568-9641 (text telephone).

Note

Customers outside the United States can contact the Microsoft
subsidiary in their country to find out about the availability of
application notes and other resources in their area.

The Microsoft Windows Guidelines for Accessible Software Design
64

Appendix B: Documentation, Packaging, and Support

Most of this document describes the process of designing and building
software, but accessibility should also be considered in the process of
producing, marketing, and supporting software products.

Providing Documentation in Alternative Formats

Some users have difficulty reading or holding conventionally printed
documentation, so documentation should also be provided in other more
accessible formats, such as online versions.

You should inform the user if he or she has or can obtain online
documentation that includes all or almost all of the information in the
printed versions. It is also acceptable to have complete online
documentation included only with a CD-ROM version of your product
rather than on floppy disks. In either case, the user should be able to
easily determine if online documentation is available, how complete it
is, and how to obtain it. Of course, it is also necessary to make sure that
the application presenting the documentation is itself accessible.

Software vendors should allow customers to order the documentation on
floppy disk. This type of electronic documentation is normally provided
as formatted ASCII text files, and this format addresses a wide variety
of needs. For example, customers who are blind or have low vision can
read the files in their own word processor using screen review or screen
enlarger utilities, and customers with mobility impairments can read
them online without holding or turning the pages of a physical book.
The ASCII files normally include special tags that identify the structure
of the document (that is, tags for headings, footnotes, and so on).

Documentation can also be provided in alternative formats, such as
large print, Braille, or audio tapes. Most companies do not provide
documentation in these formats, but license instead the source files for

documents to users or organizations who want to create accessible
versions in those formats.

A list of resources who can provide additional information or can help
in translating or distributing your documentation in accessible format
can be found in Appendix A, “Additional Resources.”

65 The Microsoft Windows Guidelines for Accessible Software
Design

Conveying Information with Text and Graphics

In general, accessible documentation design follows the same rules as
accessible visual design for software:

u Information should not be conveyed by color or graphics alone. If
printed documentation relies on color or graphics to convey
important information, that information might not be available to
some customers. Some customers may rely on a variety of devices to
enlarge a document or translate it into ASCII text, speech, or Braille,

and those devices are often unable to preserve graphic or color
information.

u Color and graphics should be added redundantly to the text to
improve documents. For example, if a reference work contains a list
of function calls and gives important information about each one,
some entries can be printed in blue ink, rather than black, to make it
instantly obvious that they are not supported on all systems. In this
case, all the entries that are shown in blue can also include a phrase,
such as “platform specific” in their description. If space is limited,
each can simply be marked with an asterisk. Such redundant use of
information often makes documentation easier for everyone to use. A
phrase or asterisk could also be used in cases where certain
paragraphs are called out with a graphic in the margin.

Modifying text in this way makes it easier for you, or another
organization working on your behalf, to translate your documentation
into alternative formats, such as Braille or online documentation.

u Maintain high contrast between text and its background, and avoid
screened art behind text.

u Text should not be less than 10 points in size.

Making Diskettes Easily Identifiable

All diskettes and CD-ROM disks should be given a unique volume label
that easily identifies the specific product and disk number. People who
are blind may not be able to read the printed disk label, but providing an

appropriate volume label allows them to identify the diskette using the
dir command at the command prompt.

The Microsoft Windows Guidelines for Accessible Software Design
66

Making Packaging Easy to Open

Users with mobility impairments may have trouble opening some
packages. It can be useful to examine packaging to see if it could be
made easier to use. For example, shrink-wrapped packages can be easy
to open if they are left unsealed at a place where two layers overlap.

Providing Customer Support through Text Telephone and
Modem

Customers who are deaf or hard-of-hearing or who have speech
impairments may not be able to use standard voice telephones to access
customer information and support services. These services should,
therefore, be made available through a text telephone (also known as TT
or TDD) and standard ASCII modems. Stand-alone text telephones are
available with a wide range of features, and combination TT/ASCII
modems can also be attached to standard computers, although
specialized software is normally used to get full answering-machine
functionality. For additional information, including lists of vendors

supplying text telephone hardware and software, see Appendix A,
“Additional Resources.”

Binding Documents to Lie Flat

Printed documentation can be bound in a large number of different
ways, but comb and spiral bindings are generally considered the most
accessible because they allow a document to lie flat. These types of
bindings are useful for people with motion or visual impairments; for
example, a person who is quadriplegic may lie the book flat and turn the
pages with a pencil, a person who is blind may run it through a flatbed
scanner to use optical-character recognition for conversion to an online
format, and a person with low vision might use a closed-caption
television system to enlarge the pages. Flat bindings are also preferred
by people who want to be able to type while reading.

Generally, the choice of binding is made on a purely economic basis.
Often a method such as perfect (glue) binding is considerably cheaper

than other alternatives, but it is not particularly convenient for users
with disabilities.

67 The Microsoft Windows Guidelines for Accessible Software
Design

Appendix C: Windows Version 3.x Guidelines

The following guidelines do not affect Win32e—-based applications
designed for Windows 95 or Windows NT, but should be followed

when developing 16-bit applications (also called Win16 applications)
for Windows version 3.x.

Yielding Control to Background Applications

Windows-based 16-bit applications should yield control at all times so
that other programs, such as accessibility aids, can run in the
background. If a program refuses to yield control, the user is unable to

access the machine. You can avoid access problems by following these
techniques:

u Avoid using system modal dialog boxes or windows. When a
system-modal window is active, no background tasks are allowed to
run. (This is true to a lesser extent for 16-bit applications running

under Windows 95, although it is not a problem for those running
under Windows NT.)

u Avoid using the PeekMessage function in tight loops without
yielding.

Colors in Online Help

An author that is designing an online help topic can specify foreground
and background colors, or use the color scheme selected by the user in
Control Panel. If the author specifies his or her own color scheme, the
user running Windows version 3.x or Windows NT version 3.x has no
way to override the scheme and use a different set of colors. As a
consequence, some users who require high-contrast colors schemes will
not be able to make use of the help topic. (In Windows 95, the help
system provides the user with the option to use only Control Panel

colors. However, this option leads to having the topic appear different
from the help author’s preference.)

If you want your online help to be usable by as many customers as
possible, you should generally allow the user to choose their own color
scheme rather than specifying one of your own choosing.

The Microsoft Windows Guidelines for Accessible Software Design

68

Testing Accessibility Flags

Windows 95 provides four new flags that advise applications when they
should adjust their behavior to accommodate users with disabilities.
Although each can be tested using the SystemParametersInfo function,
this capability is not supported in earlier versions of Windows or
Windows NT. To make this behavior available in earlier operating
systems, you can test for the flags as WIN.INI settings. These settings
are not used by Windows itself, but they can be set manually by users
who want the specified disability options. The following WIN.INI
settings are recommended.

SystemParametersinfo WIN.INI setting in earlier operating systems
SPI_SHOWSOUNDS {Windows] ShowSounds=TRUE
SPI_KEYBOARDPREF [Windows] KeyboardPref=TRUE
SPI_SCREENREADER {Windows] ScreenReader=TRUE

SPI_HIGHCONTRAST [Windows] HighContrast=TRUE

Designed for
!-‘

sug -
Microsoft®
WindowsNT®
Windows"95

Designed for Microsoft®
Windows NT® and
Windows” 95

Logo Handbook
for Software Applications

Version 2.0
July, 1996

